Marine Ecology & Evolution
Herrera Lab @ Lehigh
About

About

Welcome to the Herrera Lab at the Department of Biological Sciences of Lehigh University.

Our research focuses on the molecular aspects of ecological and organismal dynamics and evolution. We seek to understand the dynamic ecological processes that produce the observed biodiversity patterns in the largest habitable environment in planet Earth: the ocean. Increasing our understanding of these processes is of critical importance to making well-informed assessments of the potential impacts of ongoing environmental changes on Earth's ecosystems. We combine interdisciplinary field observations with experimental molecular genetics and bioinformatic analyses to study: (1) current and historical ecological dynamics in deep-sea and cold-water ecosystems; (2) the diversity of life forms that make up these ecosystems; and (3) their evolutionary adaptations and responses to environmental disturbances. The biological models that we study include corals, anemones, barnacles and shrimp.

Research Topics




  • Deep-Sea Ecology

    How widespread are species ranges at different depths?


    How homogeneous is genetic diversity within the range of a deep-sea species?


    What drives biodiversity, or lack thereof, in extreme deep-sea ecosystems?

  • Dynamic Biogeography of the Deep Ocean

    What are the controls on faunal biodiversification in the deep ocean?


    What are the mechanisms responsible for similarities in evolutionary relationships and distributions of different species?


    How often do biological invasions to new ecosystems happen in and from/into the deep?

  • Cold-water corals

    How do cold-water coral ecosystems respond to environmental changes?


    How can corals with lifespans of hundreds to thousands of years adapt to rapid changes?


    Why are there twice as many coral species living in the deep ocean, relative to shallow seas?

  • Genomics and Epigenomics

    How do organisms respond and/or adapt to environmental stress at the DNA and protein levels?


    Can epigenetic modifications be a mechanism of rapid adaptation to changing environments in species with long lifespans?


    How does the genetic background constrain epigenetic plasticity?

  • Bioinformatics

    How do we extract meaningful information from massive 'omics' datasets?


    How can different kinds of 'big data' be integrated to understand biological processes?


Team

Herrera Lab Members

Santiago Herrera

Principal Investigator

My CV is available here.

Matt Galaska

Postdoctoral Research Associate

Personal website.

Publications

In Peer-Reviewed Journals

2017

12. De Vega W.C., S. Herrera, S.O. Vernon & P.O. McGowan (2017) Epigenetic modifications and glucocorticoid sensitivity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). BMC Medical Genomics. 10(1):11. http://doi.org/10.1186/s12920-017-0248-3

2016

11. Cordes E.E., D.O. Jones, T.A. Schlacher, D.J. Amon, A.F. Bernadino, B.J. Bett, S. Brooke, R. Carney, D.M. DeLeo, K.M. Dunlop, Elva G. Escobar-Briones, A.R. Gates, L. Genio, J. Gobin, Lea-A. Henry, S. Herrera, S. Hoyt, S. Joye, S. Kark, N.C. Mestre, A. Metaxas, S. Pfeifer, K. Sink, A.K. Sweetman & U.F. Witte (2016) Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies. Frontiers in Environmental Science. 24:58. http://doi.org/10.3389/fenvs.2016.00058

10. Herrera S. & Shank T.M. (2016) RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Molecular Phylogenetics and Evolution. 100: 1055-7903. http://dx.doi.org/10.1016/j.ympev.2016.03.010.

2015

9. Herrera S., P.H. Reyes-Herrera & T.M. Shank (2015) Predicting RAD-seq marker numbers across the eukaryotic tree of life. Genome Biology and Evolution. 7(12): 3207-3225. http://dx.doi.org/10.1093/gbe/evv210. Git code repository: https://github.com/phrh/PredRAD.

8. Reyes-Herrera P.H., C.A. Speck-Hernandez, C.A. Sierra & S. Herrera (2015) BackCLIP: a tool to identify common background presence in PAR-CLIP datasets. Bioinformatics. 31 (22): 3703-3705. http://doi.org/10.1093/bioinformatics/btv442.

7. Herrera S., Watanabe H. & T.M. Shank (2015) Evolutionary history and biogeographical patterns of barnacles from deep-sea hydrothermal vents. Molecular Ecology, 24(3): 673-689. http://doi.org/10.1111/mec.13054.

2013

6. Reitzel A.M.*, S. Herrera*, M.J. Layden, M.Q. Martindale & T.M. Shank (2013) Going where traditional markers have not gone before: utility and promise for RAD-sequencing in marine invertebrate phylogeography and population genomics . Molecular Ecology, 22(11): 2953-2970. Special Issue: Genotyping by Sequencing. http://doi.org/10.1111/mec.12228. *Indicates equal contributions.

2012

5. Herrera S., T.M Shank & Sánchez J.A. (2012) Spatial and temporal patterns of genetic variation in the widespread antitropical deep-sea coral Paragorgia arborea. Molecular Ecology, 21(24): 6053-6067. http://doi.org/10.1111/mec.12074.

4. Shank T.M., E.T Baker, R.W. Embley, S. Hammond, J.F. Holden, S. White, S.L. Walker, M. Calderón, S. Herrera, et al. (2012) Exploration of the deepwater galápagos region. Oceanography 25: 50-51. http://dx.doi.org/10.5670/oceanog.2011.supplement.01.

2011

3. Shank T.M., S. Herrera, W. Cho, C.N. Roman, K.L.C. Bell (2011) Exploration of the Anaximander mud volcanoes. Oceanography 24 Suppl.: 22-23. http://dx.doi.org/10.5670/oceanog.24.1.supplement.

2010

2. Herrera S., A. Baco & J.A. Sánchez (2010) Molecular systematics of the bubblegum coral genera (Paragorgiidae, Octocorallia) and description of a new deep-sea species. Molecular Phylogenetics and Evolution, 55(1):123-135 http://dx.doi.org/10.1016/j.ympev.2009.12.007.

1. Sánchez J.A., S. Herrera, R. Navas-Camacho, A. Rodriguez-Ramirez, P. Herron, V. Pizarro, A.R. Acosta, P.A. Castillo, P. Montoya & C. Orozco (2010) White plague-like coral disease in remote reefs of the Western Caribbean. International Journal of Tropical Biology and Conservation, 58(Suppl. 1): 145-154. http://www.scielo.sa.cr/pdf/rbt/v58s1/art10v58s1.pdf.

In Non-Refereed Journals

3. Mills S., D. Leduc, J. C. Drazen, P. Yancey, A.J. Jamieson, M.R. Clark, A.A. Rowden, D. J. Mayor, S. Piertney, T. Heyl, D. Bartlett, J. Bourque, W. Cho, A. Demopoulos, P. Fryer, M. Gerringer, E. Grammatopoulou, S. Herrera, M. Ichino, B. Lecroq, T.D. Linley, K. Meyer, C. Nunnally, H. Ruhl, G. Wallace, C. Young & T.M. Shank (2016). 10,000 m under the sea: an overview of the HADES expedition to Kermadec Trench. In B. Golder and A. Connell (Eds.) Proceedings of Kermadec – Discoveries and Connections. Paper presented at Kermadec – Discoveries and Connections, Wellington, New Zealand (Pp 36–38). The Pew Charitable Trusts.

2. Herrera S. & Sánchez J.A. (2013) Un coral a la conquista de los océanos profundos (A coral conquering the deep oceans). Revista Hipótesis: apuntes científicos uniandinos. Universidad de los Andes. Bogotá. (Special Anniversary Number): 76-79. http://hipotesis.uniandes.edu.co/hipotesis/ediciones/especial-2013/.

1. Herrera S., C.A. Hernandez & E. Bahamón (2008) Guerreros fantasmales: comportamiento competitivo en el cangrejo Ocypode gaudicaudii de la isla Gorgona (Ghostly warriors: competitive behavior of the crab Ocypode gaudicaudii in the Gorgona island). Revista Hipótesis: apuntes científicos uniandinos. Universidad de los Andes. Bogotá. (9): 34-35. http://issuu.com/revistahipotesis/docs/hipotesis_9/39?e=5734754/2477767.

Fieldwork in the Deep Ocean

Footage courtesy of the NOAA Office of Ocean Exploration and Research, 2010 INDEX-SATAL.

We have lead and participated in more than a dozen scientific expeditions to deep-sea hydrothermal vents, hydrocarbon seeps, active volcanoes, mid-ocean ridges, continental margins, seamounts, ocean trenches and abyssal plains. In doing so, we have explored regions of the Atlantic, Pacific, and Southern Oceans, the Gulf of Mexico, and the Celebes, Caribbean and Mediterranean Seas and conducted over 320 days of fieldwork and 110 submersible dives.


News